Structural heterogeneity alone is a sufficient substrate for dynamic instability and altered restitution.

نویسندگان

  • Zoar J Engelman
  • Mark L Trew
  • Bruce H Smaill
چکیده

BACKGROUND Marked changes in ventricular APD restitution and associated alternans rhythm have been demonstrated in structural heart disease (SHD). However, whether this is due to structural heterogeneity or regional variation in cellular properties remains uncertain. In this study, we address the hypothesis that the structural heterogeneity associated with SHD is sufficient to alter dynamic restitution and increase the probability of electric instability. METHODS AND RESULTS Activation was simulated in a 14x14 mm(2) domain in the presence and absence (control) of a central region containing nonuniform discontinuities resembling patchy fibrosis. A modified LR1 cardiac activation model was used in a bidomain formulation with isotropic conductivities. Bipolar stimulation was imposed above the central region with coupling intervals decreasing progressively from 500 ms and then maintained at 105 ms. Structural discontinuities had little effect on electric activation at low stimulus rates, but activation time and APD distributions became highly nonuniform within and adjacent to the discontinuous region at high rates. Discordant APD alternans occurred in both "fibrosis" and control, but at lower stimulus rates and with markedly greater extent in the former. Tortuous conduction through the discontinuous region resulted in large fluctuations of diastolic intervals giving rise to regional electric instability, which modulates dynamic conduction velocity and APD restitution. This led to heterogeneous conduction block and reentry not observed in control. CONCLUSIONS We show that structural discontinuities can amplify discordant alternans and provide a rate-dependent substrate for reentry. This work provides new insights into the mechanisms by which fibrosis may contribute to arrhythmogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered dynamics of action potential restitution and alternans in humans with structural heart disease.

BACKGROUND Restitution kinetics and alternans of ventricular action potential duration (APD) have been shown to be important determinants of cardiac electrical stability. In this study, we tested the hypothesis that APD restitution and alternans properties differ between normal and diseased human ventricular myocardium. METHODS AND RESULTS Monophasic action potentials were recorded from the r...

متن کامل

Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber

When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability o...

متن کامل

Spatial heterogeneity of the restitution portrait in rabbit epicardium.

Spatial heterogeneity of repolarization can provide a substrate for reentry to occur in myocardium. This heterogeneity may result from spatial differences in action potential duration (APD) restitution. The restitution portrait (RP) measures many aspects of rate-dependent restitution: the dynamic restitution curve (RC), S1-S2 RC, and short-term memory response. We used the RP to characterize ep...

متن کامل

Size-Dependent Analysis of Orthotropic Mindlin Nanoplate on Orthotropic Visco-Pasternak Substrate with Consideration of Structural Damping

This paper discusses static and dynamic response of nanoplate resting on an orthotropic visco-Pasternak foundation based on Eringen’s nonlocal theory. Graphene sheet modeled as nanoplate which is assumed to be orthotropic and viscoelastic. By considering the Mindlin plate theory and viscoelastic Kelvin-Voigt model, equations of motion are derived using Hamilton’s principle which are then solved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2010